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The phonon frequency spectrum g(!) of a crystal, such as body centred cubic (bcc) Rb,
is known to be characterized by the Van Hove singularities at ! 6¼ 0. However, for a liquid
metal like Rb, g(!) has a single, hydrodynamic-like singularity, namely a cusp / !ð1=2Þ, at
!¼ 0. Here, we note first that computer simulation on liquid Rb near freezing has revealed
a rather well-defined Debye frequency !D. Therefore, we propose here a zeroth-order model
g0ð!Þ of g(!) for Rb, which combines the Debye model with the ‘hydrodynamic’ !ð1=2Þ cusp.
The corresponding velocity autocorrelation function hvðtÞ � vð0Þi has correctly a long-time tail
/ t�ð3=2Þ. The terms from g0ð!Þ involving !D are then damped by weak exponential factors
expð��itÞ, and the resulting first-order approximation, g1ð!Þ say, to the frequency spectrum
is found to have features in common with the molecular dynamics (MD) simulation form.
Thus !D is fixed, as well as transport coefficients for the known thermodynamic state.
The article concludes with a more qualitative discussion on supercooled liquids, and on metallic
glasses such as Fe, for which MD simulations exist.

Keywords: Disordered metals; Liquid rubidium

1. Introduction

Given a suitable force field, built from central pair potentials appropriate in sp electron
metals like the monovalent alkalis or the divalent metal Be, one can readily compute the
phonon dispersion relations and hence the frequency spectrum g(!). In body-centred
cubic (bcc) crystalline Rb, or hexagonal close-packed (hcp) Be, the Van Hove
singularities characteristic of these two different lattices are prominent features
of g(!) [1].
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When we turn from the long-range order (LRO) of crystals to the short-range order

(SRO) say in liquid Rb just above its freezing point, it is known from the theory [2,3],

that g(!) is a well-behaved function of !, except at !¼ 0 [4], where there is a cusp-like

behaviour due to the well-established long-time tail in the velocity autocorrelation

function hvðtÞ � vð0Þi, which is related precisely to g(!) in the Fourier transform defined

in equation (4). Since computer simulations exist on liquid Rb near freezing (see the

review by Copley and Lovesey [5]), it is natural to take this example as the main

focal point of the present study of g(!) in disordered metals.
However, we also explore, but now not quantitatively, how g(!) can be expected

to change in (a) a supercooled liquid metal and (b) a ‘glassy’ monatomic metal

mimicking Fe, though the only available data is from the molecular dynamics (MD)

simulations using a so-called ‘glue model’ force field constructed by Johnson [6].
The outline of this article is then as follows. In section 2, we summarize the low-

frequency expansion of g(!) in a liquid like Rb, following Gaskell and March [4].

This expansion is then made as the basis of a simple model g0ð!Þ in which the

requirements of hydrodynamics characterized by self-diffusion coefficient D and

shear viscosity � are combined with the Debye model well known for modelling g(!)
in crystals. The velocity autocorrelation function hvðtÞ � vð0Þi0 obtained from g0ð!Þ
is then compared immediately with the computer simulations of Schommers [7,8]

for liquid Rb. Damping of other than the t�ð3=2Þ tail in hvðtÞ � vð0Þi0 is then carried

out to obtain a first approximation g1ð!Þ which is found to accord fairly well with

the results of Schommers [7,8]. This allows !D to be fixed for Rb, and in the final

model for g(!) the value at !¼ 0 is put equal to the ‘hydrodynamic’ value D=�
for the thermodynamic state under consideration. Furthermore, the shear viscosity �,
plus number density � and D again, determine the ‘strength’ of the cusp term in g(!)
proportional to !ð1=2Þ.

Turning to supercooled liquids, section 3 summarizes work of Schenk et al. [9]

on transition elements, and then treats the ‘metallic glass’ Fe studied by Tomida

and Egami [10] using MD computer simulations. Finally, section 4 constitutes a

summary together with some proposals for future directions which appear to us to

offer promise.

2. Exact low-frequency expansion of g(x) and its modelling in liquid Rb

Gaskell and March [4] gave the exact series expansion of the frequency spectrum g(!)
in a monatomic liquid metal like Rb as

gð!Þ ¼ a0 þ a1!
ð1=2Þ þ a2!þ a3!

ð3=2Þ þ a4!
2 þ � � � ð1Þ

Here g(!) is defined by

gð!Þ ¼ !2 lim
k!0

SSðk,!Þ

k2
, ð2Þ
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where SSðk,!Þ is the Fourier transform with respect to r and t of the self-correlation
function GSðr, tÞ [11]. It is well known that the Green–Kubo formula

D

�
¼ lim

!!0
!2 lim

k!0

SSðk,!Þ

k2
, ð3Þ

where D denotes the self-diffusion coefficient, means that lim!!0 gð!Þ ¼ D=� ¼ gð0Þ.
The term !ð1=2Þ in the expansion equation (1) means that g(!) has a cusp at the origin,

with a negatively infinite slope at !¼ 0. As Gaskell and March emphasized in obtaining
the series equation (1), the origin of such an !ð1=2Þ term resides in the long-time
behaviour of the velocity autocorrelation function hvðtÞ � vð0Þi, which is related to
g(!) by

gð!Þ ¼
kBT

m�

Z 1

0

hvðtÞ � vð0Þi

hv2ð0Þi
cos!t dt, ð4Þ

where kBT is the thermal energy, while m is the atomic mass. Then, as found initially
by Adler and Wainwright [2] for hard spheres, and elaborated quantitatively by [3],
hvðtÞ � vð0Þi at sufficiently long times is given by

hvðtÞ � vð0Þi

hv2ð0Þi
’

2

3�
4� Dþ

�

m�

� �
t

� ��ð3=2Þ

, ð5Þ

where � is the number density and � denotes the shear viscosity. Using equations (4)
and (5), it is a straightforward matter to verify that a1 in equation (1) is given by [4]

a1 ¼ �
2

ffiffiffiffiffiffi
2�

p

3�

kBT

m�
4� Dþ

�

m�

� �� ��ð3=2Þ

: ð6Þ

Because this is determined by the transport coefficients D and �, it is appropriate
to refer to the cusp at !¼ 0 in g(!) as having ‘hydrodynamic’ character.

2.1. Zeroth-order model of g(x) in liquid Rb

Fortified by the above knowledge of the hydrodynamic cusp, we now return to the
point already made that incoherent neutron scattering or MD simulation on liquid
Rb near freezing reveals a rather well defined high frequency edge, which we take
therefore to be characterized by a Debye frequency !D. Then, by analogy with the
Debye model of a crystalline solid, we propose to form a ‘zeroth-order’ model of
g(!) for liquid Rb which we denote below by g0ð!Þ.

It is then natural to retain the !ð1=2Þ and !2 terms in equation (1) and to write
therefore

g0ð!Þ ¼
a0 þ a1!

ð1=2Þ þ a4!
2, if ! � !D,

0, if ! > !D:

(
ð7Þ
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In the ‘final’ form of the model developed below, we know a0 and a1 as discussed above,
but, we shall not impose these values on the zeroth-order model.

Inverting the Fourier transform relation equation (4) with g(!) replaced by g0ð!Þ
in equation (7), we can calculate the normalized velocity autocorrelation function,
again of course in zeroth-order, and denoted again by subscript zero, as

kBT

2m!D

hvðtÞ � vð0Þi0
hv2ð0Þi

¼ a0 þ a1!
ð1=2Þ
D

� �
j0ð�Þ þ a4!

2
D

j1ð�Þ

�
� j2ð�Þ

� �
� a1

�!D

2

� �ð1=2Þ Sð�Þ
�ð3=2Þ

,

ð8Þ

where � ¼ !Dt, jnð�Þ is the spherical Bessel function of first kind and order n, and
S(�) is the sine-Fresnel integral, with Sð�Þ ¼ ð1=2Þ � ð1=�

ffiffiffiffiffiffi
2�

p
Þ cos �2 þOð��2Þ as

� ! 1 [12]. The result of the model equation (8) yields, as � ! 0,

kBT

2m!D
¼ a0 þ

2

3
a1!

ð1=2Þ
D þ

1

3
a4!

2
D: ð9Þ

This equation (9) relates the parameters recorded in table 1.
Figure 1 [line (a)] shows g0ð!Þ, equation (7), for the values of the parameters listed

in table 1, where use has been made of the values for D, �, !D and g0ð0Þ in Ref. [8],
and of the value for � in Ref. [13]. Correspondingly, figure 2 [line (a)] shows the
normalized velocity autocorrelation function.

2.2. First-order model of g(x) in liquid Rb

A first-order model for the frequency spectrum g(!), g1ð!Þ say, is defined from
equation (8) by attaching separate exponential damping factors to the coefficients
ai (i ¼ 0, 1, 4), as

ai � ~ai � aie
��i� ð10Þ

(see table 1), while retaining undamped the leading asymptotic behaviour ���ð3=2Þ

as � ! 1. Specifically, we assume

kBT

2m!D

hvðtÞ � vð0Þi1
hv2ð0Þi

¼ ~a0 þ ~a1!
ð1=2Þ
D

� �
j0ð�Þ þ ~a4!

2
D

j1ð�Þ

�
� j2ð�Þ

� �

�
�!D

2

� �ð1=2Þ
~a1
Sð�Þ � ð1=2Þ

�ð3=2Þ
þ a1

1

2�ð3=2Þ

� �
:

ð11Þ

One then Fourier transforms equation (11) back into the frequency domain, to obtain
g1ð!Þ [14]. Equation (10) thus provides a first-order approximation of the velocity
autocorrelation function, which is displayed in figure 2 [lines (b) and (c)], along with
the first-order frequency spectrum g1ð!Þ in figure 1 [lines (b) and (c)]. We note that
until the coefficient a1 in equation (7) is substantially increased [line (c) in figure 1],
the hydrodynamic cusp is not very pronounced in g(!), though it does, of course,
in contrast to Schommers results with a pair potential simulation, at first decrease
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Table 1. Values of the parameters used to model g(!) in zeroth-order, equation (7), and
first-order approximation. Labels (a), (b) and (c) in the first columns refer to labels

of lines in figures 1 and 2.

!D ð�1012 s�1
Þ a0 ð�10�6 cm2=s�1

Þ a1!
ð1=2Þ
D ð�10�6 cm2=s�1

Þ a4!
2
D ð�10�5 cm2=s�1

Þ

(a, b) 9:7 � 1012 9:2 � 10�6
�4:8 � 10�6 2:9 � 10�5

(c) 9:7 � 1012 9:2 � 10�6
�9:7 � 10�6 2:9 � 10�5

�0 �1 �4

(a) 0.0 0.0 0.0
(b, c) 0.1 0.01 0.1

0
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3  

s]

w [1013 s−1]

(a)
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Figure 1. Frequency spectra g(!) in zeroth-order approximation, g0ð!Þ, equation (7) [line (a)], and
first-order approximation, equation (11) [lines (b) and (c)]. Values of the parameters are as in table 1.
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Figure 2. Velocity autocorrelation function, hvðtÞ � vð0Þi=hv2ð0Þi, defined in terms of the Fourier transform
of the frequency spectrum g(!) as in equation (4). Line (a) refers to the zeroth-order approximation
of equation (7), while lines (b) and (c) refer to the first-order approximation of equation (11).
Table 1 provides a list of the values of the parameters employed here.
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from !¼ 0. No attempt has been made to preserve normalization between the three
curves of g(!) in figure 1: it will be a simple matter to deal with that when incoherent
neutron scattering data becomes available for liquid Rb near freezing.

In the first-order approximation, the less oscillatory form of the velocity auto-
correlation function already bears some resemblance to that given by Schommers [8].

3. Short-range ordering of icosahedra in supercooled liquids and metallic glasses

Having given a semi-quantitative modelling of the frequency spectrum g(!) in liquid
Rb, we turn to a qualitative discussion of g(!) in disordered metals in two other
phases, namely (i) supercooled liquids and (ii) metallic glasses.

First, we summarize the findings of Schenk et al. [9], who have validated early ideas
of Frank [15] on the existence of icosahedral units in supercooled liquids in the specific
cases of supercooled Fe, Ni and Zr.

3.1. Some experimental facts on undercooled metallic melts

Here, our object is to summarize some experimental evidence obtained by Schenk
et al. [9] on stable and deeply undercooled melts of pure metallic elements. The
combination of electromagnetic levitation with neutron scattering measurements
enabled the conclusions summarized below to be reached.

The metallic elements chosen by Schenk et al. [9] were such that they form bcc
and face-centred cubic (fcc) structures in the solid state. This was done, using
Fe and Zr for the bcc case and Ni for fcc in order to test whether the structure of
the crystalline solid might influence the liquid SRO. Table 1 of Schenk et al. [9] gives
nearest and next-nearest neighbour distances and local coordination numbers for
the above three transition elements for a variety of undercooled liquid states.
Their major conclusion is that, from their experimental data, icosahedral SRR
in the melt, first postulated by Frank [15], is in evidence in their undercooled melts,
independently of the structure of the nucleating solid phases.

We shall below, after summarizing the computer simulation results on a model
of metallic glass Fe, comment on the possible relevance of the above findings to
vibrational dynamics in supercooled liquids. While on this subject of undercooled
metallic melts, also it is relevant to refer the study of Page et al. [16] on liquid Ga.

3.2. Vibrational structure in metallic glasses

While experimentally a lot of metallic glasses exist on alloying, e.g. Pd40Ni40P20

(for other examples, see figure 1 of Ref. [17]), to our knowledge no monatomic metallic
glass has, as yet, been produced in the laboratory.

Therefore, in this section we shall take as our ‘experimental’ basis the MD computer
simulations of a ‘model Fe glass’ [10], using the so-called ‘glue model’ force field
of Johnson [6] (see also [18]).

Duval et al. [19] have constructed a model which assumes a non-continuous structure
of glasses to interpret experiments on glasses using both inelastic neutron scattering
and Raman scattering. They consider specifically As2S3 and also SiO2 glasses, whereas
our interest here is in monatomic metallic glasses. To date, no such metallic glass

112 G. G. N. Angilella et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



is available for experimentation, so we must use computer simulation to make any
progress.

Tomida and Egami [10] describe the structure of their assembly in terms of spherical
harmonic representations of topology of local clusters of ‘Fe atoms’, and the
orientational correlation among these. They clearly demonstrate that the variation
of the averaged topology of the nearest-neighbour clusters displays an anomalous
behaviour at temperatures lying between the glass transition temperature Tg and
a temperature well above this value. They show from their MD studies, that this
anomalous nature resides in the aggregation of the clusters with icosahedral topology,
in accordance with the early ideas of Frank [15].

In the ‘model Fe’ glass discussed by Tomida and Egami [10], our conclusion is that
in all probability g(!) will exhibit much structure, with prominent peaks around
the ‘discrete’ normal mode frequencies of an icosahedron obtained using again a
‘Johnson-like’ force field. Some of this structure, we feel, is likely to disappear as we
go to the bcc Fe crystal, with its characteristic Van Hove singularities.

4. Summary and future directions

The main result of the present study is the construction of a semiquantitative model
for the frequency spectrum g(!) of liquid Rb near freezing. The pair potential
simulations of Schommers [7,8] (see also Ref. [5]) provides our starting point.
However, while this is very useful at frequency �!D, it does not contain the
‘hydrodynamic’ cusp emphasized in the early study of Gaskell and March [4].
Therefore, we have combined a Debye-like elastic continuum model with this
hydrodynamic feature to obtain a zeroth-order approximation to the normalized
velocity autocorrelation function, which already contains a long-time tail proportional
to t�ð3=2Þ. By damping all terms in hvðtÞ � vð0Þi0 except this tail with appropriately chosen
exponential factors, Schommer’s g(!) for ! ’ !D is reasonably well accounted for.

The remainder of this article is qualitative, dealing with two other phases of
disordered metals, namely (i) supercooled liquids and (ii) metallic glasses. In both
areas, we have emphasized, in admittedly specific cases such as those studied by
Schenk et al. [9], the importance of icosahedral units. We turn immediately below
to raise two ‘unconventional’ areas related to the present context which may be
worthy for future study.

4.1. Future directions

We believe it may be important in the area covered in this article to study further:
(i) The possible relevance of the hydrodynamic cusp even in supercooled metallic liquids
and in monatomic metallic glasses. Increase in shear viscosity � might enhance the
initial ‘plunge’ in g(!) away from D=� at !¼ 0; (ii) The question of whether, especially
in monatomic metallic glasses, the normal mode vibrational spectra of a single ‘Frank’
icosahedron is a useful ‘building block’ for vibrational dynamics. Obviously, the force
field used for the icosahedron discrete frequencies must reflect its metallic environment,
through a force field related to that of Johnson [6] for metallic Fe. Then, SRO
of the icosahedra, both positional and orientational, will clearly broaden the
discrete frequencies into a (possibly peaky) vibrational spectra of the metallic glass.

Frequency spectra of disordered metals 113

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
4
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



Finally, the role of frustration in glassy structures has been reviewed recently [20],

and this area is right for future work.
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